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FASTER COMPUTATION OF THE FIRST FACTOR 
OF THE CLASS NUMBER OF Q(Cp) 

VIJAY JHA 

ABSTRACT. We describe two fast methods for computing the first factor of the 
class number of the cyclotomic field Q(Cp) in &(p2 log5 p) and &(p2 logp) 
steps of elementary arithmetic operations on the numbers of size p, respec- 
tively. The first is deterministic, while the second holds under the GRH. This 
is an improvement over the previous method of Lehmer and Masley, which has 
complexity &(p381) 

1. INTRODUCTION 

1.1. Let p be an odd prime. Kummer deduced the classical class number 
formula [12] and used it to compute the first factor h- of the class number of 
the cyclotomic field Q(Cp) for p < 164. Newman [13] and Lehmer and Masley 
[12] extended the table to p < 521. The latter authors found the classical 
class number formula inefficient for the larger p, and based their computation 
on the evaluation of the determinant of a 0-1 matrix Np of order (p - 3)/2 
[2]. By using the faster Strassen's method [9] for computing the determinant, 
the complexity of their method can be reduced to &'(p381 ) steps of elementary 
arithmetic operations (we measure complexity in terms of elementary arithmetic 
operations on the numbers of size p). In fact, for the size of h- we have [3] 

(1) logh- < (p/4) logp. 

Hence, the number of digits N in the number h- satisfies 

(2) N = &(p logp). 

Further, for the complexity L of multiplying two N-digit numbers we have 

(3) L = (N log N) = (p log2 p). 

(For basic concepts and algorithms regarding the arithmetic of large numbers, 
we refer to [4] and [9]). Now keeping in mind (1), choose p/4 primes qi, 
p < qi < p2. By Strassen's method of computing the determinant, all the 
residues det(Np) (mod qi) can be computed in (p/4)&(p2.81) = &(p3.81) steps 
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[9]. Knowing these residues, one can find the determinant by the Chinese re- 
mainder theorem in 69(Nlog2N) = 6, (p log3 p) steps [9]. Hence, by Lehmer 
and Masley's method one can find h- in c1(p3 81) steps. 

In this paper we propose two fast methods for evaluating the first factor of 
the class number. The first method uses complex arithmetic, while the second 
uses modular arithmetic and is faster, but its assumptions are difficult to prove. 
However, these assumptions are satisfied if we assume the Generalized Riemann 
Hypothesis. The choice of the method depends upon the availability of the 
appropriate software. The second method can be further accelerated by using 
parallel processors to compute distinct modular computations. 

In ?2 we give a more convenient form of the classical class number formula, 
which we use in later sections. 

In ?3, by using multiple-precision complex arithmetic and the Fast Fourier 
Transform, we prove the following theorem: 

1.2. Theorem. The first factor of the class number of the cyclotomic field of 
prime level p can be computed in 6'(p2 log5 p) number of steps of elementary 
arithmetic operations on numbers of size p. 

In ?4 we describe a faster method based upon modular arithmetic, the Chi- 
nese remainder theorem, and the Discrete Fourier Transform. Precisely, we 
prove the following theorem: 

1.3. Theorem. Let p be an odd prime for which there exists an integer t > 1 
and primes qi - 1 (modp - 1), 1 < i < t, coprime to p, such that 

(i) qi < p3; 
(ii) Qlqi < pP14 < Q for all i, 1 < i < t, where Q = rt= I qi; 
(iii) The primes qi, 1 < i < t, can befound in 6(p2 logp) steps ofelementary 

arithmetic operations on integers of size p. 
Then thefirst factor h- of the class number of the cyclotomicfield Q(cp) can 

be computed in 6&(p2 logp) number of steps of elementary arithmetic operations 
on integers of size p. 

1.4. Remark. If one assumes the Generalized Riemann Hypothesis, the inter- 
val (p2-5, 2p2-5) contains a sufficient number of primes qi-= 1 (modp - 1) 
which satisfy (ii). (See [6, p. 125].) The total number of integers in this inter- 
val, congruent to 1 modp - 1, is roughly p2.5/(p - 1) = 61(pl.5). Since each of 
these can be tested for primality in (pl /3) steps [15], all these numbers can 
be tested for primality in 61(p2) steps. Hence, (iii) is also satisfied. This shows 
the strength of the theorem. The author acknowledges the referee's suggestions 
for this remark. 

1.5. Remark. There are known faster methods [5, 8, and 10] for obtaining 
information on the structure of the minus part C- of the class group of Q(4p) 
once some factors of h- are known. Lehmer and Masley [12] used a costly 
method for computing some factors of h- . Our method is equally applicable 
to the computation of the first factor of the class number [1 1] of any imaginary 
subfield K of Q(Cp) in 69(p2 logp) steps. It is known that the first factor of 
the class numbers of K divides h- [ 1 1]. Thus, we get many factors of h- by a 
faster method, and in conjunction with the results of [5, 8, and 10], can obtain 
information on the structure of C- with less effort. 
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1.6. The author thanks the referee for communicating the manuscript [7], in 
which (see p. 6 of [7]) Fung, Granville and Williams used modular arithmetic to 

compute h- in (p3 log2 p) steps and used it to compute h- for all p < 3000. 
Paraphrasing the referee, it did not occur to them to use the DFT at the second 
stage of computing their polynomials, by which they might have obtained a 
complexity only slightly inferior to ours. 

2. A CLASS NUMBER FORMULA 

In this section we derive a class number formula which is interesting in itself. 
Let p = (p - 1)/2, let g be a primitive root modulo p, and let for an integer 
i, gi be the unique integer such that g' -gi (modp) and 1 < gi < p - 1 . Let 
further ,B be a complex primitive (p - 1)st root of unity. We now prove the 
following lemma. 

2.1. Lemma. Let 
p-l 

H(X) = E(p - 2gi)X'. 
i=o 

be a polynomial of degree (p - 3)/1. Then the coefficients of H can be computed 
in 6(p) steps. Let further B be the group of all complex (p - 1 )st roots of unity 
and B- C B be the subset of all b E B such that b(P-1)12 = -1. Then we have 
the following class number formulae: 

(4) h- = H(2)(p3)/2(fl)H(fl3) 1 7H(flp-21 H I (4) h-= p p312 ..Hf2)-(2p)(p-3)/2 aEB Ha) 

Proof. Since p - 1 can be factored in &(p1/3) steps ([15, p. 111]), and if the 
factorization of p - 1 is known, a primitive root g modp can be computed in 
&(p1/3) steps ([15, p. 111]), and the coefficients of the polynomial H can be 
computed in 6(p) steps. Next, by the classical class number formula [2, 10], 

h I (f1 (p(f)((f 3~).. fp2 h- = (2p)(p-3)/2 (.- (P-2), 

where 
p-2 

f (X) = -EgiXi. 
i=O 

Now let a be a (p - I)st root of unity such that a(p-1)/2 = -1 . Then 

p-2 p-1 p-2 

-o(a) = Egii = gii + E gigi 
i=O i=O i=p 

p-l p-l p-l 

-E(gia + g +1aP+i) = Z:(gi + gi - p)ai = j:(2gi 
- p)a. 

i=o i=o i=o 

Clearly, for odd n, 1 < n < p - 2, we have fnp --1 . Hence, 

(o(fJn) = H(fln), n odd, 1 < n < p-2. 

This gives (4). 5 

We will now propose two methods for evaluating h- by using (4). 
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3. PROOF OF THEOREM 1.2 

To prove Theorem 1.2, we represent numbers in B (see Lemma 2.1) as 
complex numbers evaluated with the precision N given by (2), and make use 
of the Fast Fourier Transform [4, 9] of sequences of such numbers. We employ 
the following steps of computation: 

(a) Compute Xi and a complex (p- l)st primitive root /B = exp(27ri/(p- 1)) 
with the precision N defined by (2). 

(b) Compute fin for odd n, 1 < n < p - 2, with the precision N. 
(c) Computer H(fln) for odd n, 1 < n < p - 2, with the precision N. 
(d) Multiply the above values together, divide the result by (2p)(P-3)/2, and 

take the absolute value. 
Now we can compute the values of 7r = arctan(x) and fi = exp(27ri/(p - 1)) 

with the precision of N digits in 6'(L log N) steps [1], where L is given by (3). 
The task (b) can be completed in &(pL) steps. Now the numbers H(fl2n+l), 
O < n < (p - 3)/2, are the values of the polynomial H of degree (p - 3)/2 at 
(p - 1)/2 points, and this sequence (with the precision N) can be computed 

2 in 6'(Nlog2 NL) steps [4, 9]. Finally, to multiply these values together, and 
then divide (p - 3)/2 times repeatedly by 2p will take 61(pL) steps. Hence, 
the total complexity is 6'(N log2 NL) = (N2 log3 N) by (3). Now (2) gives 
the theorem. To avoid roundoff errors, one can double the number of digits N 
involved in all intermediate computations. O 

4. PROOF OF THEOREM 1.3 

The proof consists of several stages. 

4.1. Let the integer t > 1 and primes q1, q2, ..., qt satisfy conditions (i)- 
(iii) of the theorem. To prove the theorem, for each qi, 1 < i < t, we define 
epimorphisms of the ring of integers Z[fl] of the field Q(/3) onto the finite 
field Fq, consisting of qi elements, compute the images of H(fln), n odd, 
1 < n < p - 2, multiply them together and then divide by (2p)P-I to get the 
residues h- (mod qi) (see the right-hand side of (4)). Let Q be the product of 
the primes qi, 1 < i < t. By the Chinese remainder theorem we can uniquely 
determine h- (mod Q) from its residues mod qi . By (1) and the condition (ii) 
of the theorem, Q > h- . Since h > 0, we can uniquely determine h- by 
knowing its residue mod Q. 

Further, (i) and (ii) imply that t < p. Now there exists an algorithm 
with complexity &(N log3 N) which, from the sequence ai = h- (mod qi), 
1 < i < t, computes the unique positive integer < Q, of at most N dig- 
its, whose residues mod qi are ai [4, 9]. By (2), N = -'(plogp). Hence, to 
prove the theorem, it suffices to show that all these residues can be computed 
in 61(p2 logp) steps. Since t < p, it is sufficient to show that each of these 
residues can be computed in c1(p logp) steps. 

4.2. Let q be one of these qj, 1 < i < t. We remark that by (i), q < p3 
and hence logq = &logp). Now q - 1 can be factored in 61(q113) = (p) 
steps ([15, p. 111]). Once the factors of q - 1 are known, a primitive root 
gmodq can be found in 6'(log3q) = 6'(log3p) steps ([15, p. 111]). Now let 
11q = g(q-l)/(p-l) (mod q) . Then flq belongs to the exponent p - 1 modq and 
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can be computed in 6(log((q - l)/(p - 1))) = &(logp) steps. Let further Bqj 
be the set of all odd powers of fq. Clearly, the set Bq- can be computed in 
(p) steps. Thus, all these computations can be carried out in &(p) steps. 

Since q 1- (modp - 1), q splits in Q(fl) as a product of prime ideals of 
degree 1; let q be one of these. Then Z[,f]/q is a finite field with q elements; 
and thus, it is isomorphic to Fq. Now the elements fi, fl3, ... , flp-2 are the 
roots of the polynomial XP+ 1 and have distinct images in Fq , which are clearly 
the zeros of XP + 1 'in lPq. Clearly, the correspondence j3 -* fiq induces an 
isomorphism of Z[8fl/q onto Fq that maps B- onto B- . It is also clear that 
this epimorphism can be constructed in &(p) steps. Now, by (4), 

h- =-(2p)(P-3)/2 fi H(a) (modq). 

Let a =fl2n+l be an element of BE-. Then 

p-l 

H((X)_ H(32n+ 1) _ p2gi) fl(2n+ 1)i H(a) H(filq'1 -( 
i=o 

p-1 p-i 

-S(p-2g)wBqfB2ni 1:1(p _g.i}ni 

J:p-2g1)flqil 
q 

- 2gi) fi}y 
q 

i=o i=o 

where yq f_q2 (modq). Now define a polynomial i of degree (p - 1)/2 as 
follows: 

p-l 

V(X) = E{(p - 2gi)flq}Xi. 
1=o 

Clearly, the coefficients of yV can be computed in &(p) steps. The sequence 

H(fl2n+1) = ig(yn) 0 < n < (p - 3)/2, 

is nothing but the Discrete Fourier Transform of the sequence of coefficients 
of Vy in Fq, and as it follows from [14], this can be computed in (p logp) 
steps of elementary arithmetic operations on numbers of size p. Further, the 
elements of this sequence can be mutually multiplied together in Fq in &(p) 
steps. Let their product be R. It can be verified that the complexity to compute 
the inverse of 2p mod q, raised to the power (p - 3)/2, is & ((logp)) (see [9]). 
Multiply the latter by R in Fq to get h- mod q . Clearly, all these residues can 
be computed in &(p logp) steps, and the theorem follows. O 

5. CONCLUDING REMARKS 

In light of Remark 1.4 one can expect that conditions (i)-(iii) of Theorem 1.3 
require only &(p2) steps. Similarly, from the proof of Theorem 1.3 we observe 
that for each qi, 1 < i < t, all other computations, except that of DFT, require 
Y(p) steps. Hence, for all qi, 1 < i < t, these computations can be carried 

out in &(p2) steps. Hence, the cost is due to the cost of computing the DFT 
(see ?4.2) modqi. This shows that by this method one might not expect the 
cost,to be less than &(p2 logp) . This suggests the following conjecture: 



1710 VIJAY JHA 

Conjecture. There cannot be a method which computes h- in less than 
(p2 logp) steps for all the primes p . 
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